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Abstract

Enclosures of parallelogrammic shape present high potential to be used in heat and/or mass transfer applications, as

they can act as heat and/or mass transfer inhibitors or promoters, being usually referred to as heat and/or mass transfer

diodes. The heat and/or mass transfer characteristics and performances of such enclosures depend mainly on the im-

posed boundary conditions and geometrical arrangement. In this work, the double-diffusive natural convection

problem in parallelogrammic enclosures filled with fluid-saturated porous media is studied numerically. The pressure–

velocity link for the fluid contained within the fluid-saturated porous media is modeled using the Darcy Law, and a

discussion is presented about the use of this model. Emphasis is given to the situation when the porous media that fill

the enclosure are saturated with moist air. A short set of values of the dimensionless governing parameters for steady

two-dimensional parallelogrammic enclosures is taken, and analysis is concentrated over the numerical results obtained

for such combinations of governing parameters. The situations of combined or opposite global heat and mass flows are

considered. Results clearly show the strong potential of parallelogrammic enclosures filled with fluid-saturated porous

media for heat and mass transfer applications. Such single parallelogrammic enclosures can be assembled, thus giving

rise to complete, and even complex, efficient heat and/or mass transfer systems.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical studies on double-diffusive natural con-

vection in enclosures filled with fluid-saturated porous

media are present in many recent works [1–10], just to

mention a few. However, to the author’s knowledge, no

studies have been conducted considering enclosures of

parallelogrammic shape. Depending on the inclination

angle, aspect ratio and imposed boundary conditions

at the vertical walls of the enclosure, different (or even

very different) heat and/or mass transfer characteris-

tics and performances can be achieved. Under given

imposed boundary conditions, very different heat and/

or mass transfer performances are obtained for positive

or for negative inclination angles, maintaining fixed

the remaining parameters and conditions. Due to this
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marked directional behavior, the parallelogrammic en-

closure is usually referred to as a heat and/or mass

transfer diode.

Single thermal natural convection problem in paral-

lelogrammic enclosures has been previously studied [11–

16]. Some of such studies include additional effects of

heat diffusive separation walls between contiguous par-

allelogrammic enclosures assembled in a vertical stack

[11,14]. Double-diffusive natural convection in parallel-

ogrammic enclosures has been studied recently by the

same author [17], where it is presented a short summary

of the previous work made on natural convection in

enclosures of this shape. Work reported in [17] clearly

shows the marked directional behavior of the parallelo-

grammic enclosures in what concerns both heat and/or

mass transfer. It is thus a geometrical form that needs to

be explored and that can be used as the basic form from

which, by assembly, complete and/or complex efficient

heat and/or mass transfer systems can be obtained. The

present work is the counter-part of the work reported

in [17], now dealing with parallelogrammic enclosures
ed.
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Nomenclature

C concentration

D mass diffusivity

g gravitational acceleration

Da Darcy number

H height

H heatfunction

k thermal conductivity

K permeability

L length

Le Lewis number

m mass

M molar mass

M massfunction

n outward normal

N buoyancy ratio

Nu Nusselt number

p pressure

Pr Prandtl number

Ra Darcy-modified Rayleigh number

Sc Schmidt number

Sh Sherwood number

T temperature

u, v Cartesian velocity components

W specific humidity, dry basis

x, y Cartesian co-ordinates

Greek symbols

a thermal diffusivity

b volumetric expansion coefficient

h inclination angle

m kinematic viscosity

q density

w streamfunction

Subscripts

C referring concentration

H higher value

L lower value

T referring temperature

* dimensionless
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filled with fluid-saturated porous media, some common

aspects being present in both works.

Enclosures filled with fluid-saturated porous media

are common in many fields. In many cases, the porous

media are saturated with moist air, which is almost al-

ways present. Construction elements and insulation

systems are two of the most frequent situations of this

type. Starting with enclosures of parallelogrammic

shape, filled with air-saturated porous media (insulation

materials), one can obtain panels by assembling many of

such enclosures. Due to the heat and/or mass transfer

directional behavior of each individual enclosure, the so

obtained panels also have a directional behavior, the

panels behaving as heat and/or mass transfer diodes.

Such composite panels can be used with advantage, once

established the way as they should act when compared

with panels obtained as assembling of enclosures of

rectangular shape: heat and/or mass transfer promoters

or inhibitors. The use of the parallelogrammic shape in

construction elements is just one possibility among

many others. This is the main reason to study the dou-

ble-diffusive natural convection problem in enclosures

of parallelogrammic shape, filled with a fluid-saturated

porous media. The presented results correspond to some

selected combinations of the dimensionless governing

parameters, for which, in addition, the temperature and

concentration boundary conditions can be specified such

that global heat and mass flows that cross the enclosure

are combined or opposite. The temperature and con-

centration buoyancy effects can also be combined or
opposite, the presented results being limited to com-

bined buoyancy effects only. Analysis is made for the

results obtained for some particular cases, but the pre-

sented model is general.

Visualization of the heat and mass transfer processes

is made in detail using the heatlines and masslines [18].

The global Nusselt and Sherwood numbers dependence

on the dimensionless governing parameters and bound-

ary conditions is explored in detail. Combinations of

the dimensionless governing parameters and boundary

conditions leading to multiple solutions or oscillatory

solutions [7–10] are deliberately avoided.
2. Physical and numerical modeling

2.1. Physical model

The two-dimensional parallelogrammic enclosure

filled with a fluid-saturated porous medium, as presented

in Fig. 1, which is under the influence of the vertical

gravity field, is the domain under analysis. The fluid

saturating the porous medium is a perfect mixture of an

indifferent fluid and a solute whose mass transfer occurs.

Vertical walls, of height H , are maintained at constant

different levels of temperature and concentration, thus

leading to a double-diffusive natural convection prob-

lem. Inclined walls of length L form an angle h relative to
the horizontal, being referred to as inclined walls, and

are assumed to be impermeable and adiabatic. Inclina-



Fig. 1. Physical model and geometry.
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tion angle h and aspect ratio H=L are changed in order

to analyze their influence on the resulting flow structure

and on heat and mass transfer performances of the

parallelogrammic enclosures.

2.2. Model assumptions

The fluid saturating the porous medium is a perfect

two-component mixture, and this mixture is taken as a

Newton–Fourier fluid. The solute concentration is taken

as the ratio between the mass of solute to the total mass,

C ¼ m1=ðm1 þ m2Þ. If the mixture under analysis is the

moist air, C is the specific humidity in a wet basis, which

is related to the specific humidity in a dry basis, W , as

C ¼ W =ð1þ W Þ. The mixture density is not affected by

pressure changes (incompressible mixture), but it chan-

ges under temperature and/or concentration changes.

Eventual phase changes inside the enclosure are not

considered. The porous medium is assumed to be iso-

tropic, and characterized by a uniform permeability, K.
The pressure–velocity link for the fluid contained within

the saturated porous medium is given by the Darcy Law,

a model whose discussion is made in Section 2.5.

Density on the buoyancy term is a function of tem-

perature and concentration, being taken into account
through the Boussinesq approach. The volumetric

thermal expansion coefficient is obtained as bT ¼ �ðoq=
oT Þp;C=q and similarly, the volumetric mass expansion

coefficient relative to concentration C is obtained as

bC ¼ �ðoq=oCÞp;T=q. The mixture density in the buoy-

ancy term is then expressed as [19]

q ¼ qL½1� bTðT � TLÞ � bCðC � CLÞ� ð1Þ

Usually bT P 0, the water in the range 0–4.1 �C being

the most frequent exception, bC can be either positive or

negative. For a perfect mixture of ideal gases, bT ¼ 1=Tabs
and bC ¼ ðM2 �M1Þ=½ðM2 �M1ÞC þM1�, M1 being the

molecular weight of the transported solute and M2 the

molecular weight of the indifferent fluid. For moist air at

room conditions, bT can assume values near bT ¼ 0:0034
�C�1 and bC can assume values between bC ¼ 0:61 kg/kg

(for pure dry air, with C ¼ 0) and bC ¼ 0:38 kg/kg (for

pure water vapor, with C ¼ 1).

The thermophysical properties of the involved media

are assumed to be constant, exception made to density

appearing in the buoyancy term, as explained before. In

practical situations, however, the properties of the

mixture in each point are dependent, between others, of

the concentration level of the transported species and of

the temperature level.
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It is assumed that the thermal levels are small and

similar enough so that thermal radiation heat transfer

between the walls is negligible, and the fluid is assumed

to be radiatively non-participating. The energy terms

due to viscous dissipation and change of temperature

due to reversible deformation (work of pressure forces)

are not considered. For the two-component mixture

under analysis, there are not considered the energy terms

of interdiffusional convection and diffusion thermo

(Dufour effect) [20]. The only considered energy diffu-

sion term is thus this due to Fourier conduction. The

only considered mass transfer diffusional term is this due

to Fick diffusion, and the pressure diffusion, body force

diffusion and thermal diffusion (Soret effect) terms are

not considered [20].

The presented results for moist air must be used with

care in practical situations, due to the real possibility of

the non-considered condensation of the transported

species (water vapor). Temperature and concentration

levels can be obtained that lead to relative humidities

close to the unit (or even greater than 1), situations for

which condensation of the transported species occur.

Such eventual phase change, however, is not taken into

account in the present work.

2.3. Model equations

Assuming that the pressure–velocity link for the fluid

within the porous medium is given by the Darcy Law, it

can be stated that

u ¼ �K
l

op
ox

� �
; v ¼ �K

l
op
oy

�
þ qg

�
ð2Þ

where K is the permeability of the isotropic porous

medium. Defining the streamfunction through its first

order derivatives as

qu ¼ ow
oy

; qv ¼ � ow
ox

ð3Þ

taking into account the Boussinesq approach and

making the involved variables dimensionless as

u� ¼ u=ða=HÞ ¼ ow�=oy�; v� ¼ v=ða=HÞ ¼ �ow�=ox�

ð4Þ

x� ¼ x=H ; y� ¼ y=H ð5Þ

T� ¼ ðT � TLÞ=ðTH � TLÞ;
C� ¼ ðC � CLÞ=ðCH � CLÞ

ð6Þ

w� ¼ w=qa ð7Þ

the set of partial differential equations governing the

problem under analysis is

0 ¼ o2w�
ox2�

þ o2w�
oy2�

þ RaT
o

ox�
ðT� þ NC�Þ ð8Þ
o

ox�
ðu�T�Þ þ

o

oy�
ðv�T�Þ ¼

o2T�
ox2�

þ o2T�
oy2�

ð9Þ

o

ox�
ðu�C�Þ þ

o

oy�
ðv�C�Þ ¼

1

Le
o2C�

ox2�

�
þ o2C�

oy2�

�
ð10Þ

In these equations a is the thermal diffusivity of the

combined fluid plus solid porous matrix medium, in this

work taken as nearly equal to the thermal diffusivity of

the fluid alone.

The following dimensionless parameters emerge from

the governing equations

Le ¼ a=D ð11Þ

RaT ¼ gbTðTH � TLÞKH
ma

ð12Þ

N ¼ bCðCH � CLÞ
bTðTH � TLÞ

ð13Þ

where RaT is the Darcy-modified Rayleigh number. This

parameter can be expressed as RaT ¼ bgbTðTH � TLÞH 3=
ðmaÞcðK=H 2Þ, the number within the square brackets

being the Rayleigh number usual in natural convection

heat transfer in non-porous domains, and the ratio

Da ¼ K=H 2 being usually referred to as the Darcy

number.

Parameter N is the buoyancy ratio, which is the ratio

between the solute and thermal buoyancy forces. It can

be either positive or negative, its sign depending of that

of the ratio between the volumetric temperature and

concentration expansion coefficients, bT and bC, res-

pectively. When N is positive, the temperature and

concentration buoyancy effects are combined, and they

are opposite otherwise. When Eqs. (9) and (10) have the

same boundary conditions, the T� and C� fields are

coincident if Le ¼ 1.

Combined global heat and mass flows and negative

values of parameter N can lead to multiple solutions or

oscillatory solutions [7–10]. For N close to the unit with

opposite global heat and mass flows, one can have also

multiple solutions. Considering, for example, the linear

initial distributions T� ¼ 1� x� and C� ¼ x�, one obtains
T� þ NC� ¼ 1, a result that is independent of x�. All the

points in the enclosure are under the same buoyancy

effect, and a stagnant fluid situation results. Any small

disturbances, introduced by the initial conditions or by

the numerical method of resolution used, lead to different

flow structures because they are generating differences in

an initially expected uniform buoyancy field. Such situ-

ations are intentionally avoided in the present work.
2.4. Boundary conditions

Over all the (impermeable) walls of the enclosure it is

w� ¼ 0 ð14Þ
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It is thus assumed that the solute mass flow through the

vertical walls is small enough in order to validate the use

of zero normal velocity values at such walls. Bejan [21]

presents a scale-based analysis of such an assumption.

The dimensionless velocity components are made null at

the walls of the enclosure, and in the interior of the

domain they are evaluated from the dimensionless

streamfunction using Eq. (4).

Prescription of T� and C� over the vertical walls can

lead to a situation of combined or opposite global heat

and mass flows. Over the vertical walls it is thus pre-

scribed that

T�ð0; y�Þ ¼ 1; T�½cos h=ðH=LÞ; y�� ¼ 0 ð15Þ

C�ð0; y�Þ ¼ 1;

C�½cos h=ðH=LÞ; y�� ¼ 0

for combined global heat and mass flows ð16Þ

or

C�ð0; y�Þ ¼ 0;

C�½cos h=ðH=LÞ; y�� ¼ 1

for opposite global heat and mass flows: ð17Þ

At the inclined walls of the enclosure, taken as adi-

abatic and impermeable, it is

oT�
on�

¼ oC�

on�
¼ 0 ð18Þ

where n� is the dimensionless normal to the inclined wall

under consideration.
2.5. Discussion on the physical model used

The use of the Darcy Law to express the pressure–

velocity link for the fluid saturating the porous medium

is a reasonable model if the fluid velocity is maintained

within low limits. If this is not the case, inertial effects

growth and need to be taken into account using, for

example, the Forchheimer modification [22]. Some re-

cent works consider the non-Darcian effects when deal-

ing with natural convection flows in fluid-saturated

porous media [1,2,5], which generally use a Brinkman–

Forchheimer equation [22].

The use of the Darcy Law seems to be a good ap-

proach if ReK ¼ vK1=2=m < 1 [22,23]. As given in [22], the

vertical velocity scale corresponding to height H , near a

single vertical wall, can be expressed as v � ða=HÞRaTh1;
Ni ¼ ½gbðTH � TLÞK=m�h1;Ni, where h1;Ni ¼ maxð1;NÞ.
The Reynolds number based on this velocity scale is

ReK ¼ vK1=2=m � RaTh1;Ni
ffiffiffiffiffiffi
Da

p
=Pr, and the use of the

Darcy Law seems to be a good approach if RaTh1;Ni�ffiffiffiffiffiffi
Da

p
=Pr < 1, in an order of magnitude sense. For the

situations under analysis, the worst situation to apply

the Darcy flow model is that corresponding to the
highest value of N ¼ 5 (that leads to the highest veloc-

ity). In this case, for a fluid with Pr � 1, the criterion to

apply the Darcy flow model becomes 5RaT
ffiffiffiffiffiffi
Da

p
< 1,

that is 5½gbT=ðvaÞ�DTK3=2 < 1. For air at room condi-

tions, that is, gbT=ðvaÞ � 108 m�3 �C�1 [19], and the

application criterion becomes 5DTK3=2 < 10�8 m3 �C.
The worst temperature difference is its maximum value,

taken as the maximum temperature difference for which

the Boussinesq approach can be applied, which is

DTmax � 10 �C, and the applicability criterion of the

Darcy flow model becomes 5K < 10�6 m2, in an order of

magnitude sense. Looking on the permeability of some

usual porous insulation materials [22,23], one concludes

that the Darcy flow model can be used in the situations

under analysis.

The use of the Darcy Law poses a problem at the

solid impermeable domain boundaries, where the

velocity components are zero, but the pressure gradient

components are not. So, the Darcy Law is not really

used in the closest neighboring of the impermeable and

non-slip boundaries. The velocity components are made

explicitly zero at such boundaries, and they are not

evaluated from the derivatives of the streamfunction

field. The impermeable boundary condition w� ¼ 0 is,

however, imposed at all the walls of the enclosure.
2.6. Heat and mass transfer parameters

The global Nusselt and Sherwood numbers for the

parallelogrammic enclosure are defined respectively as

Nu ¼
R H
0
�k oT

ox

� �
x¼0

dy

k½ðTH � TLÞ=L�H cos h

¼ � 1

ðH=LÞ cos h

Z 1

0

oT�
ox�

� �
x�¼0

dy� ð19Þ

Sh ¼
R H
0
qD oC

ox

�� ��
x¼0

dy

qD½ðCH � CLÞ=L�H cos h

¼ 1

ðH=LÞ cos h

Z 1

0

oC�

ox�

����
����
x�¼0

dy� ð20Þ

As the inclined walls are impermeable and adiabatic, the

derivatives oT�=ox� and oC�=ox� present in the global

Nusselt and Sherwood numbers definitions can be

equally taken at x� ¼ 0 or at x� ¼ cos h=ðH=LÞ. The

modulus sign was introduced when defining the Sher-

wood number in order to define a positive value for this

parameter, for both the situations of combined or

opposite global heat and mass flows. The reference sit-

uation for heat transfer, present in the denominator of

Eq. (19), is the pure conduction situation through the

stagnant fluid of thermal conductivity k, under the

thermal gradient ðTH � TLÞ=L, considering that the best

value for the cross-section heat conduction area is

1� H cos h, which is the adequate value for shallow
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parallelogrammic enclosures. The reference situation for

mass transfer, used in the definition of the Sherwood

number, is obtained in a similar way.

2.7. Numerical modeling

The numerical method used in this work is an

adaptation of a two-dimensional laminar version of the

control-volume-based finite element method described in

[24]. Iteration by iteration, the dimensionless stream-

function field is evaluated by solving Eq. (8), the

dimensionless velocity components are evaluated from

the dimensionless streamfunction using Eq. (4), and the

dimensionless temperature and concentration fields are

evaluated by solving their corresponding differential

equations [Eqs. (9) and (10)]. A non-uniform structured

101· 101 mesh, which expands from the walls towards

the center of the enclosure in both directions with an

expansion factor of 1.05, was selected after some pre-

liminary testes of asymptotic type.

The used control volume finite element method has

been tested and successfully used to solve similar prob-

lems, using primitive variables or the streamfunction

together with the Darcy flow model [24–27].
3. Results and analysis

3.1. Considered situations

There are five dimensionless parameters governing

the problem under analysis: Le, N , RaT, H=L, and h.
Additionally, both situations of combined or opposite

global heat and mass flows can be considered, as given

by Eqs. (16) and (17). All the presented results refer to

moist air saturating the porous medium, with a low

concentration of water vapor, thus fixing Le ¼ 0:8. For
moist air, ðM2 �M1Þ > 0, bC P 0, and N P 0. In this

work are thus considered situations with combined

temperature and concentration buoyancy effects only.

The expression for RaT can be written as RaT ¼
½gbT=ðvaÞ�DTHK. As gbT=ðvaÞ � 108 m�3 �C�1 for air at

room conditions [19], it is RaT ¼ 108 DTHK where, as

shown before when discussing the Darcy flow model,

DT < 10 �C and 5K < 10�6 m2. For the situation with

K ¼ 10�7 m2, DT ¼ 10 �C and H ¼ 1 m (a large-size

enclosure), it is RaT ¼ 100, which is taken as the upper

limit for this parameter. Lower permeability, tempera-

ture difference or enclosure size lead to lower values of

RaT, the lower value of this parameter considered in this

work being RaT ¼ 25. However, lower values of this

parameter can be obtained in practical applications. The

buoyancy ratio is given by Eq. (13), and the considered

values for this parameter are obtained from that exp-

ression. As bT � 3:4� 10�3 �C�1 and bC ¼ 0:61 kg/kg

for air with low moisture content, it is N � 179:4ðDT=
DCÞ. Many values can be obtained for the buoyancy

ratio, in this work being taken N ¼ 5 as the upper limit

and N ¼ 0 (no solute transfer) as the lower limit. In what

concerns the H=L ratio, it goes from the square enclosure

with H=L ¼ 1 to the shallow enclosure with H=L ¼ 0:1.
It should also be noted that the limits of RaT and H=L
taken in the present work are the same as taken by Bejan

[19] to the enclosure of rectangular cross-section.

Analysis of results is concentrated on the influence of

parameters N , RaT, H=L and h over the resulting flow

structure and on the heat and mass transfer perfor-

mances of the parallelogrammic enclosures. The situa-

tion of opposite global heat and mass flows is also

shortly considered.

Analysis of results presents many common features

as for the double-diffusive natural convection in paral-

lelogrammic enclosures filled with a single fluid, as de-

scribed in [17].

3.2. Flow structure, temperature and concentration fields,

and heat and mass transfer visualization

The flow structure is analyzed through the dimen-

sionless streamlines, the temperature and concentration

fields are analyzed through their respective dimension-

less contour plots, and the heat and mass transfer pro-

cesses are analyzed through the dimensionless heatlines

and masslines, respectively. The marked influence of the

governing dimensionless parameters and boundary

conditions over the involved fields and processes is

illustrated for a short set of results. Heatfunction is

made dimensionless as H� ¼ H=½kðTH � TLÞ� and mass-

function is made dimensionless as M� ¼ M=½qDðCH �
CLÞLe�, where k is the thermal conductivity of the

combined fluid plus solid porous matrix medium, in this

work taken as nearly equal to the thermal conductivity

of the fluid alone. As the reference diffusion situations

used to make these functions dimensionless are different

from the ones used to define the Nusselt and Sherwood

numbers through Eqs. (19) and (20), the numeric values

of such functions do not match the numerical values of

the global Nusselt and Sherwood numbers [18,19].

For the square H=L ¼ 1 parallelogrammic enclosure

with h ¼ 30�, RaT ¼ 100 and no solute transfer ðN ¼ 0Þ,
the streamlines, isotherms and heatlines are presented in

Fig. 2. Such results present some common features as for

the differentially heated square enclosure [25], and it is

evident the influence of the inclination angle over the

variable’s fields. It is observed some symmetry on the

streamlines and on the isotherms, which also exists for

the differentially heated square enclosure [28].

Results for RaT ¼ 100, N ¼ 0, H=L ¼ 0:25 and

h ¼ 30� or h ¼ �30� are presented in Fig. 3a (for h ¼
30�) and Fig. 3b (for h ¼ �30�). For h ¼ 30�, changing
from H=L ¼ 1 to H=L ¼ 0:25 results in marked changes

on the flow structure, the streamlines extending now



Fig. 2. Streamlines (left), isotherms (center) and heatlines (right), for the situation of non-solute transfer ðN ¼ 0Þ, and h ¼ 30�,
H=L ¼ 1 and RaT ¼ 100 (w�;min ¼ �5:52, w�;max ¼ 0:00, Dw� ¼ 0:55, DT� ¼ 0:10; H�;min ¼ �1:13, H�;max ¼ 3:48, DH� ¼ 0:46).

Fig. 3. Streamlines (top), isotherms (center) and heatlines (bottom), for the situation of non-solute transfer ðN ¼ 0Þ, H=L ¼ 0:25,

RaT ¼ 100 and (a) h ¼ 30� (w�;min ¼ �3:54, w�;max ¼ 0:00, Dw� ¼ 0:35, DT� ¼ 0:10; H�;min ¼ �1:96, H�;max ¼ 1:09, DH� ¼ 0:31); and (b)

h ¼ �30� (w�;min ¼ �1:19, w�;max ¼ 0:00, Dw� ¼ 0:12; DT� ¼ 0:10, H�min ¼ �0:84, H�;max ¼ 0:35, DH� ¼ 0:12).
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over almost all length L. At the center of the enclosure,

the closed loops of the streamlines are close to the
rectangular form, and not to the elliptical form as for the

parallelogrammic enclosure with H=L ¼ 1. In what
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concerns the temperature field, its basic structure is

essentially maintained, the isotherms being almost par-

allel to each other along the enclosure’s length. Changes

on the streamlines are also observed over the heatlines,

which are now much more elongated, and heat flows

mainly along the neighboring of the top inclined wall of

the enclosure towards the right (cold) wall. When incli-

nation angle changes from h ¼ 30� to h ¼ �30�, main-

taining H=L ¼ 0:25, marked changes occur in all the

process. Flow structure changes, presenting now a main

clockwise vortex with two minor interior vortexes near

the hot and cold vertical walls. Flow is less intense than

for h ¼ 30�, as given by the numeric values of the

streamfunction. Temperature field presents a marked

stratification, the isotherms being nearly horizontal and

parallel to each other. Heat flows mainly by conduction

across the enclosure, thus resulting in a low global heat

flow. This same conclusion can also be obtained from

the numeric values of the heatlines. Heatlines show that

heat is mainly extracted from the lower-left corner of the

enclosure, and that heat reaches the cold wall along a

large portion of its length. Heat leaving the remaining

portion of the hot wall reaches the cold wall just on a

short region near its upper-right corner. The flow

structure is also observed on the heatlines, with a

clockwise vortex near the hot left vertical wall.

Results for h ¼ 30�, RaT ¼ 100, H=L ¼ 0:5 and

combined global heat and mass flows are presented in

Fig. 4a for N ¼ 2 and in Fig. 4b for N ¼ 5. Main

changes from Fig. 2 to 3a are due to the increase on the

buoyancy term and to the change on H=L. Flow is more

intense, the temperature and concentration gradients are

higher near the vertical walls, and heat and mass transfer

increases as N increases. As N increases, heat flows in a

narrow region close to the top inclined wall of the

enclosure. Numerical values of the heatfunction and

massfunction confirm that heat and mass transfer in-

crease. In what concerns temperature and concentration

fields, as Le ¼ 0:8 � 1, there are no major differences on

these fields, as well as on the heatfunction and mass-

function fields.

Results for the situation with H=L ¼ 0:5, h ¼ 30�,
RaT ¼ 100, N ¼ 5 and opposite global heat and mass

flows are presented in Fig. 5. The main contribution for

buoyancy is due to concentration, the highest concen-

tration level occurring at the right vertical wall. Thus,

the natural convection induced flow presents a structure

composed by counter-clockwise vortexes. In fact,

streamlines present a flow structure with a main counter-

clockwise vortex with two minor interior counter-

clockwise vortexes near the upper-left and lower-right

corners of the enclosure. The main flow visiting the

neighboring of the vertical walls takes place through

thin regions adjacent to the upper and lower inclined

walls of the enclosure. Marked stratification is observed

on the temperature and concentration fields, their con-
tour plots being markedly horizontal and parallel to

each other in a large portion of the central part of the

enclosure. The intense temperature gradients are present

near the upper-left and lower-right corners, the main

heat and mass transfer processes occurring in such re-

gions. It is observed from the heatlines that heat flows

from the left to the right vertical wall through a thin

region adjacent to the lower inclined wall. This is a di-

rect consequence of the natural convection resulting

counter-clockwise rotating flow. Due to this flow struc-

ture and to the imposed concentration boundary con-

ditions, mass transfer takes place from the right to the

left vertical wall through a thin region adjacent to the

upper inclined wall of the enclosure, as clearly shown by

the masslines.

3.3. Heat and mass transfer parameters

Global Nusselt number for the situation of no solute

transfer ðN ¼ 0Þ is presented in Fig. 6a–c, as function of

the inclination angle h and of the ratio H=L, for Darcy-

modified Rayleigh numbers of 25, 50 and 100, respec-

tively. When RaT ¼ 25, similar behaviors are observed

for H=L ¼ 0:1 and for H=L ¼ 0:2, the Nusselt number

for H=L ¼ 0:2 being always greater than for H=L ¼ 0:1.
For low values of h (h � �60�) and high values of h
(h � 60�) the global Nusselt number is nearly the same,

and it is also nearly the same for H=L ¼ 0:1 and for

H=L ¼ 0:2. Over all the )60� to 60� range for h, the
global Nusselt number is only slightly greater than 1.

When H=L changes from 0.2 to 0.5, the Nusselt number

increases for any value of h. It is observed the existence

of a maximum Nusselt number for h near 30�. The

H=L ¼ 1 Nusselt number presents a different behavior

with the inclination angle h. It considerably increases for

the considered extreme values of h, and exhibits a min-

imum for h near )10�.
Denominator ðH=LÞ cos h in the definition of the

Nusselt and Sherwood numbers [Eqs. (19) and (20)] re-

sults from the better description of reality as H=L de-

creases but, due to the presence of cos h, global Nusselt

and Sherwood numbers can increase two times for the

considered extreme values of h.
In Fig. 6b is presented the Nusselt number as func-

tion of h and H=L for RaT ¼ 50. Changing from

RaT ¼ 25 to RaT ¼ 50 results into a general increase on

the Nusselt number for any value of inclination angle h.
The main change on the behavior of Nusselt with h is

given by the existence of marked maximum values of

Nusselt number for H=L ¼ 0:2 and H=L ¼ 0:5, the

greatest value corresponding to H=L ¼ 0:5 and h near

40�. In this case, it is evident the thermal diode effect of

the parallelogrammic enclosure filled with a fluid-satu-

rated porous medium, the Nusselt number for some

positive values of h being some times higher than the

Nusselt number for negative values �h. Looking for



Fig. 4. Streamlines (top), isotherms (top-1) isoconcentration (top-2), heatlines (top-3) and masslines (bottom), for combined global heat

and mass flows, Le ¼ 0:8, H=L ¼ 0:5, RaT ¼ 100, and h ¼ 30� for (a) N ¼ 2 (w�;min ¼ �13:18, w�;max ¼ 0:00, Dw� ¼ 1:32; DT� ¼ 0:10,

DC� ¼ 0:10; H�;min ¼ �3:55, H�;max ¼ 6:57, DH� ¼ 1:01; M�;min ¼ �3:62, M�;max ¼ 6:82, DM� ¼ 1:04); and (b) N ¼ 5 (w�;min ¼ �22:11,

w�;max ¼ 0:00, Dw� ¼ 2:21; DT� ¼ 0:10; DC� ¼ 0:10; H�;min ¼ �5:69, H�;max ¼ 10:81, DH� ¼ 1:65; M�;min ¼ �5:49, M�;max ¼ 11:53,

DM� ¼ 1:70).
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practical applications, positive values of h allow heat

transfer promoters, and negative values of h allow
thermal insulation effect (for the specified temperature

boundary conditions). The Nusselt number for H=L ¼ 1



Fig. 5. Streamlines (top), isotherms (top-1) isoconcentration

(top-2), heatlines (top-3) and masslines (bottom), for opposite

global heat and mass flows, Le ¼ 0:8, H=L ¼ 0:5, RaT ¼ 100,

and h ¼ 30� for N ¼ 5 (w�;min ¼ 0:00, w�;max ¼ 4:64, Dw� ¼ 0:46;

DT� ¼ 0:10; DC� ¼ 0:10; H�;min ¼ 0:00, H�;max ¼ 4:36, DH� ¼
0:44, M�;min ¼ �2:06, M�;max ¼ 2:39, DM� ¼ 0:45).

Fig. 6. Global Nusselt number versus inclination angle h and

ratio H=L for the situation of non-solute transfer ðN ¼ 0Þ and
(a) RaT ¼ 25; (b) RaT ¼ 50; and (c) RaT ¼ 100.
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is higher for RaT ¼ 50 than for RaT ¼ 25, the maximum

Nusselt number occurring for h near )30�.
Results for RaT ¼ 100 and N ¼ 0 are presented in

Fig. 6c. When compared with results for RaT ¼ 50, it is

observed a small increase on the Nusselt number for low
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values of h and a noticeable increase of the Nusselt

number for positive and high values of h. For

H=L ¼ 0:1, H=L ¼ 0:2 and H=L ¼ 0:5 it is evident the

existence of maximum Nusselt numbers, greater values

of the Nusselt number corresponding to greater values

of H=L and h, for h in the range 20–40�. For H=L ¼ 1 it

is observed a general increase on the global Nusselt

number when compared with the situation for RaT ¼ 50,

which exhibits a minimum value for h near )40�. The
thermal diode effect is evident, this effect increasing as

increases the ratio H=L, for H=L6 0:5. For H=L ¼ 0:5,
the ratio ½ðNuÞh=ðNuÞ�h�max can reach values as high as

nearly 4. For small values of H=L and for h < �30�, the
Nusselt number is almost constant and independent of

h. The obtained results for h ¼ 0 can be compared with

those presented by Bejan [19] for this same situation,

and a good agreement is observed.

The main advantage of using parallelogrammic

enclosures to obtain insulation systems can be analyzed

at this point. If one considers a vertical panel obtained

by assembling n parallelogrammic enclosures, the heat

transferred through the panel is obtained as

_Qðh;H=LÞ ¼ nNuðh;H=LÞk ðTH � TLÞ
L

H cos h ð21Þ

Considering two panels 1 and 2, with the same width

and composed by n enclosures with the same height H ,

it is imposed that L1 cos h1 ¼ L2 cos h2 and the ratio

between the heat transferred by such panels can be

expressed as

_Qðh1;H=L1Þ
_Qðh2;H=L2Þ

¼ Nuðh1;H=L1Þ
Nu½h2; ðH=L1Þðcos h2= cos h1Þ�

cos h1
cos h2

� �2

ð22Þ

For the situation with RaT ¼ 100, a square enclosure

with h1 ¼ 0� and H=L1 ¼ 1, and the parallelogramic

enclosure with h2 ¼ �60� and H=L2 ¼ ðH=L1Þðcos h2=
cos h1Þ ¼ 0:5, one obtains from Fig. 6c that _Qð0�; 1Þ=
_Qð�60�; 0:5Þ � 8:27, that is, the use of such a parallel-

ogrammic enclosure significantly reduces the global heat

transfer through the panel when compared with the

panel obtained by assembling square enclosures with the

same width.

Similar results can also be obtained for the parallelo-

grammic enclosures acting as heat transfer promoters,

when compared with the rectangular enclosure, for po-

sitive values of the inclination angle h. This result is

obvious for square and parallelogrammic enclosures

with equal length L.
The obtained behavior of the parallelogrammic

enclosure for heat transfer also applies for mass trans-

fer. The diode effect is thus a characteristic of the par-

allelogrammic shape, which can be used with great

advantage for the inhibition or for the promotion of

the heat and/or mass transfer processes through such
enclosures, taken individually or assembled in the form

of panels.

A physical explanation can be given for the thermal

diode effect. For positive values of h the hot fluid moves

upwards and reaches the inclined upper wall, which has

a favorable inclination, allowing some tangentiality to

the flow flowing along the inclined wall towards the cold

wall. The same applies also for the descending cold fluid

on the neighboring of the opposite vertical wall. The

flow is intense and the thermal gradients near the ver-

tical walls are high, thus resulting into high global heat

transfer rates. For negative values of h, the inclined wall

has a non-favorable inclination, and the fluid tends to be

trapped on the top of the hot wall and on the bottom of

the cold wall of the enclosure, with a resulting marked

thermal stratification there. The flow is less intense and

the thermal gradients are smaller near the vertical walls,

thus resulting into lower heat transfer rates. This same

physical explanation applies also for the mass transfer

diode effect, when solute transfer is present.

Results for combined global heat and mass flows and

N ¼ 2 are presented in Fig. 7a–c for the same values of

RaT of 25, 50 and 100, respectively. As the solute mass

transfer is present, analysis includes also the global

Sherwood number. In general terms, it can be observed

that as Le ¼ 0:8 � 1, there are no significant differences

between the behavior and the numeric values of the

global Nusselt and Sherwood numbers. For RaT ¼ 25 it

is observed an increase on the Nusselt number for

intermediate values of h relative to the non-solute

transfer situation as illustrated in Fig. 6a. It is also ob-

served the existence of marked maximum values of the

Nusselt and Sherwood numbers for H=L ¼ 0:1, H=L ¼
0:2 and H=L ¼ 0:5, which occur nearly in the range

10� < h < 40�. For H=L ¼ 1, the Nusselt and Sherwood

numbers maintain their increases for low and high val-

ues of h, the numeric values for h being higher than these

corresponding to �h, and the minimum Nusselt and

Sherwood numbers correspond to h � �30�. For RaT ¼
50, in Fig. 7b, remains essentially the analysis made to

Fig. 6b, now enlarged to include the Sherwood number.

When RaT ¼ 100, in Fig. 7c, there are marked maxima

on the Nusselt and Sherwood numbers for H=L ¼ 0:1
and for H=L ¼ 0:2, the transfer parameters for H=L ¼
0:2 being higher than those for H=L ¼ 0:1. For H=L ¼
0:5 and H=L ¼ 1 it is observed a monotonic increase on

the Nusselt and Sherwood numbers when h increases.

However, for ha� 20�, the transfer parameters corre-

sponding to H=L ¼ 0:5 are higher than those corre-

sponding to H=L ¼ 1, this relation being inverted for

hb� 20�.
The situation corresponding to combined heat and

mass flows and N ¼ 5 is presented in Fig. 8a–c for

RaT ¼ 25, RaT ¼ 50 and RaT ¼ 100, respectively. Fig. 8c

represents the situation with the highest source term

considered in the vertical momentum equation, with



Fig. 7. Global Nusselt (left) and Sherwood (right) numbers versus inclination angle h and ratio H=L for the situation of combined

global heat and mass transfer with N ¼ 2 and (a) RaT ¼ 25; (b) RaT ¼ 50; and (c) RaT ¼ 100.
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high numerical values for the Nusselt and Sherwood

numbers, for high values of h. In this case, the maximum

heat transfer parameters are obtained for H=L ¼ 0:1, for
h near 40�. For H=L ¼ 0:2, H=L ¼ 0:5, and H=L ¼ 1

there are not observed maxima, and the transfer

parameters have an essentially monotonically increasing



Fig. 8. Base legend as for Fig. 7, but for N ¼ 5.
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behavior with h. In this case, the thermal diode effect for

H=L ¼ 0:1, evaluated as ½ðNuÞh=ðNuÞ�h�max can reach

values as high as nearly 50, which is remarkable and

demonstrates the high potential of the parallelogram-

mic enclosures. The same applies similarly to the mass
transfer diode effect of the parallelogrammic enclosure.

It should be mentioned that the heat and mass transfer

diode effects increase as increases the vertical momen-

tum source term, the transfer parameters for low values

of h remaining essentially unchanged.
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Results for opposite global heat and mass flows and

N ¼ 5 are presented in Fig. 9a–c, for RaT ¼ 25, RaT ¼ 50
Fig. 9. Global Nusselt (left) and Sherwood (right) numbers versus incl

heat and mass transfer with N ¼ 5 and (a) RaT ¼ 25; (b) RaT ¼ 50; a
and RaT ¼ 100, respectively. The vertical momentum

source term is conditioned essentially by the concen-
ination angle h and ratio H=L for the situation of opposite global

nd (c) RaT ¼ 100.
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tration field, which has its maximum at the right vertical

wall of the enclosure. From the physical explanation

given for the heat and mass transfer diode effects, the

favorable inclination corresponds now to negative val-

ues of h, and the non-favorable situation corresponds to

positive values of h. For RaT ¼ 25, in Fig. 9a, there are

marked maximum values of the Nusselt and Sherwood

numbers for H=L ¼ 0:1, H=L ¼ 0:2 and H=L ¼ 0:5, all
for negative values of h, the highest heat and mass

transfer parameters occurring for H=L ¼ 0:5. When RaT
changes from 25 to 50, this in Fig. 9b, there is a con-

siderable increase on the heat and mass transfer

parameters for negative values of h, with marked max-

ima for H=L ¼ 0:1 and H=L ¼ 0:2. The region of the

figure corresponding to high values of h remains essen-

tially unchanged. For RaT ¼ 100, in Fig. 9c, higher heat

and mass transfer parameters are obtained for lower

values of h, and lower heat and mass transfer parameters

are obtained for higher values of h. In this case, there are

also noticeable heat and mass transfer diode effects.

Their physical explanation remains the same as for the

situation of combined global heat and mass flows, the

highest transfer parameters occurring now for low val-

ues of h and the minimum values of the heat and mass

transfer parameters occur for high values of h.
From the dependence of the Nusselt and Sherwood

numbers on h and H=L, and from the exhibited maxima

of these transfer parameters, additional work remains to

be made in what concerns the finding of relationships to

give ðNu; ShÞmax as function of h and H=L for a given

Darcy-modified Rayleigh number.
4. Conclusions

Many heat and/or mass transfer elements can be

made of enclosures filled with fluid-saturated porous

media. Parallelogrammic shape is very attractive as the

basic shape for the enclosures to build, by assembly,

more complete and complex structures that should

present high and versatile heat and/or mass transfer

performances. As many construction elements, in the

form of enclosures, are subject to heat and mass transfer

and are, in many situations, filled with moist air-satu-

rated porous media, present study deals mainly with

such systems. Even if the presented results refer to moist

air only, the presented model is quite general, and the

non-solute transfer or the isothermal situations are

simple particular cases.

In terms of flow structure, temperature levels and

concentration levels, strong changes occur in the paral-

lelogrammic enclosure when changes are made on the

Darcy-modified Rayleigh number, on the inclination

angle and/or on the aspect ratio of the enclosure.

Increasing the source term of the vertical momentum

equation, by increasing the Darcy-modified Rayleigh
number or by increasing the buoyancy ratio, always

leads to increases on the heat and/or mass transfer

performances of the enclosure. Such increases are,

however, strongly dependent on the aspect ratio of the

enclosure and on the inclination angle. Very different

behaviors are obtained for the combined or opposite

global heat and mass flows that cross the parallelo-

grammic enclosure. This is of special interest because, in

many practical situations, both situations can equally

occur.

When dealing with construction elements filled with

moist air-saturated porous media, special attention

needs to be given to the temperature and concentration

levels at each point of the enclosure, as they can lead to

condensation conditions inside the enclosure. Addi-

tionally, the porous matrix can act as a set of conden-

sation nuclei, the condensation phenomenon occurring

more easily than in an enclosure filled with a single fluid.

With careful control of the temperature and concentra-

tion levels, such (usually damaging) condensation con-

ditions can be avoided.

In what concerns the heat and/or mass transfer per-

formances of the parallelogrammic enclosure, some

main aspects should be mentioned. Selected combina-

tions of the aspect ratio and inclination angle can lead to

considerably high heat and/or mass flows through the

enclosure, and some combinations of these parameters

can even lead to the maximum allowable heat and/or

mass transfer. It is thus present a maximum transfer

performance, which is of crucial importance when the

parallelogrammic enclosure is to be used as a transfer

promoter. However, other selected inclination angles, of

opposite sign from the foregoing ones, can lead to

essentially unchanged poor transfer performances of the

enclosure. Notable is the transfer diode effect of the

parallelogrammic enclosure: for a given aspect ratio,

the ratio between the maximum of the transfer param-

eters to the respective minimum transfer parameters can

be of some tenths. It is this marked directional transfer

behavior of the parallelogrammic enclosure that, ade-

quately conjugated with the temperature and concen-

tration boundary conditions, gives to this shape so much

interest and so high potential to be used in systems

where heat and/or mass transfer processes are present.

Many of the conclusions made on the heat and/or

mass transfer characteristics and performances of the

parallelogrammic enclosures filled with fluid-saturated

porous media are also valid for the similar parallelo-

grammic enclosures without any porous media, and fil-

led with a single fluid only.
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